| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbor | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hbor | ⊢ ((𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hb.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | orc 665 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 3 | 2 | alimi 1384 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 5 | hb.2 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 6 | olc 664 | . . . 4 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 7 | 6 | alimi 1384 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 8 | 5, 7 | syl 14 | . 2 ⊢ (𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 9 | 4, 8 | jaoi 668 | 1 ⊢ ((𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: hb3or 1481 nfor 1506 19.43 1559 |
| Copyright terms: Public domain | W3C validator |