ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1e0p1 GIF version

Theorem 1e0p1 8518
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
1e0p1 1 = (0 + 1)

Proof of Theorem 1e0p1
StepHypRef Expression
1 0p1e1 8153 . 2 (0 + 1) = 1
21eqcomi 2085 1 1 = (0 + 1)
Colors of variables: wff set class
Syntax hints:   = wceq 1284  (class class class)co 5532  0cc0 6981  1c1 6982   + caddc 6984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-mulcl 7074  ax-addcom 7076  ax-i2m1 7081  ax-0id 7084
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077
This theorem is referenced by:  6p5e11  8549  7p4e11  8552  8p3e11  8557  9p2e11  8563  fzo01  9225  bcp1nk  9689
  Copyright terms: Public domain W3C validator