![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anass | GIF version |
Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 921 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | anass 393 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitri 182 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∧ w3a 919 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: 3anrot 924 3anan12 931 anandi3 932 3exdistr 1833 r3al 2408 ceqsex2 2639 ceqsex3v 2641 ceqsex4v 2642 ceqsex6v 2643 ceqsex8v 2644 trel3 3883 sowlin 4075 dff1o4 5154 mpt2xopovel 5879 dfsmo2 5925 ecopovtrn 6226 ecopovtrng 6229 eqinfti 6433 distrnqg 6577 recmulnqg 6581 ltexnqq 6598 enq0tr 6624 distrnq0 6649 genpdflem 6697 distrlem1prl 6772 distrlem1pru 6773 divmulasscomap 7784 muldivdirap 7795 divmuldivap 7800 prime 8446 eluz2 8625 raluz2 8667 elixx1 8920 elixx3g 8924 elioo2 8944 elioo5 8956 elicc4 8963 iccneg 9011 icoshft 9012 elfz1 9034 elfz 9035 elfz2 9036 elfzm11 9108 elfz2nn0 9128 elfzo2 9160 elfzo3 9172 lbfzo0 9190 fzind2 9248 zmodid2 9354 redivap 9761 imdivap 9768 maxleast 10099 dfgcd2 10403 lcmneg 10456 coprmgcdb 10470 divgcdcoprmex 10484 cncongr1 10485 cncongr2 10486 findset 10740 |
Copyright terms: Public domain | W3C validator |