| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr3i | GIF version | ||
| Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
| Ref | Expression |
|---|---|
| 3imtr3.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3imtr3i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbir 133 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | sylib 120 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: cbv1 1672 moimv 2007 hblem 2186 tfi 4323 smores 5930 idssen 6280 bezoutlemle 10397 |
| Copyright terms: Public domain | W3C validator |