ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle GIF version

Theorem bezoutlemle 10397
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemle (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐴𝑧𝐵))
2 breq1 3788 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
3 breq1 3788 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
4 breq1 3788 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
53, 4anbi12d 456 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
62, 5bibi12d 233 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))))
7 equcom 1633 . . . . . . 7 (𝑧 = 𝑤𝑤 = 𝑧)
8 bicom 138 . . . . . . 7 (((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))) ↔ ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
96, 7, 83imtr3i 198 . . . . . 6 (𝑤 = 𝑧 → ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
10 bezoutlemgcd.4 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
116cbvralv 2577 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1210, 11sylib 120 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1312ad2antrr 471 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
14 simplr 496 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧 ∈ ℤ)
159, 13, 14rspcdva 2707 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
161, 15mpbird 165 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
17 bezoutlemgcd.3 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1817ad2antrr 471 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ0)
19 bezoutlemgcd.5 . . . . . . . . 9 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2019ad2antrr 471 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
21 breq1 3788 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝐷 ↔ 0 ∥ 𝐷))
22 breq1 3788 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐴 ↔ 0 ∥ 𝐴))
23 breq1 3788 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐵 ↔ 0 ∥ 𝐵))
2422, 23anbi12d 456 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧𝐴𝑧𝐵) ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2521, 24bibi12d 233 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))))
26 0zd 8363 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
2725, 10, 26rspcdva 2707 . . . . . . . . . 10 (𝜑 → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2827ad2antrr 471 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2918nn0zd 8467 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℤ)
30 0dvds 10215 . . . . . . . . . 10 (𝐷 ∈ ℤ → (0 ∥ 𝐷𝐷 = 0))
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷𝐷 = 0))
32 bezoutlemgcd.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3332ad2antrr 471 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐴 ∈ ℤ)
34 0dvds 10215 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ∥ 𝐴𝐴 = 0))
3533, 34syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐴𝐴 = 0))
36 bezoutlemgcd.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
3736ad2antrr 471 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐵 ∈ ℤ)
38 0dvds 10215 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
3937, 38syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐵𝐵 = 0))
4035, 39anbi12d 456 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ((0 ∥ 𝐴 ∧ 0 ∥ 𝐵) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4128, 31, 403bitr3d 216 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝐷 = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4220, 41mtbird 630 . . . . . . 7 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ 𝐷 = 0)
4342neqned 2252 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ≠ 0)
44 elnnne0 8302 . . . . . 6 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℕ0𝐷 ≠ 0))
4518, 43, 44sylanbrc 408 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ)
46 dvdsle 10244 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧𝐷𝑧𝐷))
4714, 45, 46syl2anc 403 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷𝑧𝐷))
4816, 47mpd 13 . . 3 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
4948ex 113 . 2 ((𝜑𝑧 ∈ ℤ) → ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
5049ralrimiva 2434 1 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wne 2245  wral 2348   class class class wbr 3785  0cc0 6981  cle 7154  cn 8039  0cn0 8288  cz 8351  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-dvds 10196
This theorem is referenced by:  bezoutlemsup  10398
  Copyright terms: Public domain W3C validator