| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aaanh | GIF version | ||
| Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| aaanh.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| aaanh.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| aaanh | ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aaanh.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | 19.28h 1494 | . . 3 ⊢ (∀𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓)) |
| 3 | 2 | albii 1399 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓)) |
| 4 | aaanh.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 5 | 4 | hbal 1406 | . . 3 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) |
| 6 | 5 | 19.27h 1492 | . 2 ⊢ (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| 7 | 3, 6 | bitri 182 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: mo23 1982 2eu4 2034 |
| Copyright terms: Public domain | W3C validator |