![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbal | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbal.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbal | ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbal.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | alimi 1384 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
3 | ax-7 1377 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-5 1376 ax-7 1377 ax-gen 1378 |
This theorem is referenced by: hba2 1483 nfal 1508 aaanh 1518 hbex 1567 pm11.53 1816 euf 1946 hbral 2395 |
Copyright terms: Public domain | W3C validator |