ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2f GIF version

Theorem abid2f 2243
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
abid2f.1 𝑥𝐴
Assertion
Ref Expression
abid2f {𝑥𝑥𝐴} = 𝐴

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . . 5 𝑥𝐴
2 nfab1 2221 . . . . 5 𝑥{𝑥𝑥𝐴}
31, 2cleqf 2242 . . . 4 (𝐴 = {𝑥𝑥𝐴} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝑥𝐴}))
4 abid 2069 . . . . . 6 (𝑥 ∈ {𝑥𝑥𝐴} ↔ 𝑥𝐴)
54bibi2i 225 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝑥𝑥𝐴}) ↔ (𝑥𝐴𝑥𝐴))
65albii 1399 . . . 4 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝑥𝐴}) ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
73, 6bitri 182 . . 3 (𝐴 = {𝑥𝑥𝐴} ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
8 biid 169 . . 3 (𝑥𝐴𝑥𝐴)
97, 8mpgbir 1382 . 2 𝐴 = {𝑥𝑥𝐴}
109eqcomi 2085 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:  wb 103  wal 1282   = wceq 1284  wcel 1433  {cab 2067  wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator