ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleqf GIF version

Theorem cleqf 2242
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2178. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2075 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1461 . . 3 𝑦(𝑥𝐴𝑥𝐵)
3 cleqf.1 . . . . 5 𝑥𝐴
43nfcri 2213 . . . 4 𝑥 𝑦𝐴
5 cleqf.2 . . . . 5 𝑥𝐵
65nfcri 2213 . . . 4 𝑥 𝑦𝐵
74, 6nfbi 1521 . . 3 𝑥(𝑦𝐴𝑦𝐵)
8 eleq1 2141 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
9 eleq1 2141 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108, 9bibi12d 233 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
112, 7, 10cbval 1677 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
121, 11bitr4i 185 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wb 103  wal 1282   = wceq 1284  wcel 1433  wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208
This theorem is referenced by:  abid2f  2243  n0rf  3260  eq0  3266  iunab  3724  iinab  3739  sniota  4914
  Copyright terms: Public domain W3C validator