| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alexim | GIF version | ||
| Description: One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1550. (Contributed by Jim Kingdon, 2-Jul-2018.) |
| Ref | Expression |
|---|---|
| alexim | ⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24 583 | . . . . 5 ⊢ (𝜑 → (¬ 𝜑 → ⊥)) | |
| 2 | 1 | alimi 1384 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(¬ 𝜑 → ⊥)) |
| 3 | exim 1530 | . . . 4 ⊢ (∀𝑥(¬ 𝜑 → ⊥) → (∃𝑥 ¬ 𝜑 → ∃𝑥⊥)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (∀𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ∃𝑥⊥)) |
| 5 | nfv 1461 | . . . 4 ⊢ Ⅎ𝑥⊥ | |
| 6 | 5 | 19.9 1575 | . . 3 ⊢ (∃𝑥⊥ ↔ ⊥) |
| 7 | 4, 6 | syl6ib 159 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ⊥)) |
| 8 | dfnot 1302 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 ↔ (∃𝑥 ¬ 𝜑 → ⊥)) | |
| 9 | 7, 8 | sylibr 132 | 1 ⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1282 ⊥wfal 1289 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 |
| This theorem is referenced by: exnalim 1577 exists2 2038 |
| Copyright terms: Public domain | W3C validator |