| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnot | GIF version | ||
| Description: Given falsum, we can define the negation of a wff 𝜑 as the statement that a contradiction follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfnot | ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1291 | . 2 ⊢ ¬ ⊥ | |
| 2 | mtt 642 | . 2 ⊢ (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥))) | |
| 3 | 1, 2 | ax-mp 7 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ⊥wfal 1289 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: inegd 1303 pclem6 1305 alnex 1428 alexim 1576 difin 3201 indifdir 3220 recvguniq 9881 bj-axempty2 10685 |
| Copyright terms: Public domain | W3C validator |