| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an42 | GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| an42 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 550 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) | |
| 2 | ancom 262 | . . 3 ⊢ ((𝜓 ∧ 𝜃) ↔ (𝜃 ∧ 𝜓)) | |
| 3 | 2 | anbi2i 444 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
| 4 | 1, 3 | bitri 182 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: rnlem 917 supmoti 6406 distrnqg 6577 distrnq0 6649 prcdnql 6674 prcunqu 6675 |
| Copyright terms: Public domain | W3C validator |