ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrnqg GIF version

Theorem distrnqg 6577
Description: Multiplication of positive fractions is distributive. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
distrnqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))

Proof of Theorem distrnqg
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6538 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 6560 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
3 mulpipqqs 6563 . . 3 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
4 mulclpi 6518 . . . . . . 7 ((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) → (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N)
5 simpl 107 . . . . . . . 8 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → 𝑦N)
6 mulclpi 6518 . . . . . . . 8 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)
75, 6jca 300 . . . . . . 7 ((𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
84, 7anim12i 331 . . . . . 6 (((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) ∧ (𝑦N ∧ (𝑤 ·N 𝑢) ∈ N)) → ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
9 an12 525 . . . . . . 7 (((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)) ↔ (𝑦N ∧ ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
10 3anass 923 . . . . . . 7 ((𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N) ↔ (𝑦N ∧ ((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)))
119, 10bitr4i 185 . . . . . 6 (((𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N)) ↔ (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
128, 11sylib 120 . . . . 5 (((𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) ∧ (𝑦N ∧ (𝑤 ·N 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
1312an4s 552 . . . 4 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N))
14 mulcanenqec 6576 . . . 4 ((𝑦N ∧ (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑢)) ∈ N) → [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
1513, 14syl 14 . . 3 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q = [⟨(𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
163, 15eqtr4d 2116 . 2 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨(𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢)))⟩] ~Q )
17 mulpipqqs 6563 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
18 mulpipqqs 6563 . 2 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨(𝑥 ·N 𝑣), (𝑦 ·N 𝑢)⟩] ~Q )
19 addpipqqs 6560 . 2 ((((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N)) → ([⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q +Q [⟨(𝑥 ·N 𝑣), (𝑦 ·N 𝑢)⟩] ~Q ) = [⟨(((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))), ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢))⟩] ~Q )
20 mulclpi 6518 . . . . 5 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
21 mulclpi 6518 . . . . 5 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
22 addclpi 6517 . . . . 5 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2320, 21, 22syl2an 283 . . . 4 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2423an42s 553 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
25 mulclpi 6518 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2625ad2ant2l 491 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
2724, 26jca 300 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
28 mulclpi 6518 . . . 4 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
29 mulclpi 6518 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
3028, 29anim12i 331 . . 3 (((𝑥N𝑧N) ∧ (𝑦N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
3130an4s 552 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
32 mulclpi 6518 . . . 4 ((𝑥N𝑣N) → (𝑥 ·N 𝑣) ∈ N)
33 mulclpi 6518 . . . 4 ((𝑦N𝑢N) → (𝑦 ·N 𝑢) ∈ N)
3432, 33anim12i 331 . . 3 (((𝑥N𝑣N) ∧ (𝑦N𝑢N)) → ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N))
3534an4s 552 . 2 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑣) ∈ N ∧ (𝑦 ·N 𝑢) ∈ N))
36 an42 551 . . . . 5 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑧N𝑤N) ∧ (𝑣N𝑢N)))
3736anbi2i 444 . . . 4 (((𝑥N𝑦N) ∧ ((𝑧N𝑢N) ∧ (𝑤N𝑣N))) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
38 3anass 923 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑢N) ∧ (𝑤N𝑣N))))
39 3anass 923 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ↔ ((𝑥N𝑦N) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
4037, 38, 393bitr4i 210 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ↔ ((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)))
41 mulclpi 6518 . . . . . 6 ((𝑦N𝑥N) → (𝑦 ·N 𝑥) ∈ N)
4241ancoms 264 . . . . 5 ((𝑥N𝑦N) → (𝑦 ·N 𝑥) ∈ N)
43 distrpig 6523 . . . . 5 (((𝑦 ·N 𝑥) ∈ N ∧ (𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))))
4442, 20, 21, 43syl3an 1211 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))))
45 simp1r 963 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑦N)
46 simp1l 962 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑥N)
47203ad2ant2 960 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑧 ·N 𝑢) ∈ N)
48213ad2ant3 961 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑤 ·N 𝑣) ∈ N)
4947, 48, 22syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
50 mulasspig 6522 . . . . 5 ((𝑦N𝑥N ∧ ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
5145, 46, 49, 50syl3anc 1169 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
52 mulcompig 6521 . . . . . . . . 9 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
5352oveq1d 5547 . . . . . . . 8 ((𝑥N𝑦N) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)))
5453adantr 270 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)))
55 simpll 495 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑥N)
56 simplr 496 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑦N)
57 simprl 497 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑧N)
58 mulcompig 6521 . . . . . . . . 9 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
5958adantl 271 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
60 mulasspig 6522 . . . . . . . . 9 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6160adantl 271 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
62 simprr 498 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → 𝑢N)
63 mulclpi 6518 . . . . . . . . 9 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
6463adantl 271 . . . . . . . 8 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
6555, 56, 57, 59, 61, 62, 64caov4d 5705 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑥 ·N 𝑦) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
6654, 65eqtr3d 2115 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N)) → ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
67663adant3 958 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) = ((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)))
68 simplr 496 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑦N)
69 simpll 495 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑥N)
70 simprl 497 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑤N)
7158adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
7260adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
73 simprr 498 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → 𝑣N)
7463adantl 271 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
7568, 69, 70, 71, 72, 73, 74caov4d 5705 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣)) = ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣)))
76753adant2 957 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣)) = ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣)))
7767, 76oveq12d 5550 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (((𝑦 ·N 𝑥) ·N (𝑧 ·N 𝑢)) +N ((𝑦 ·N 𝑥) ·N (𝑤 ·N 𝑣))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
7844, 51, 773eqtr3d 2121 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
7940, 78sylbir 133 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑥 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = (((𝑥 ·N 𝑧) ·N (𝑦 ·N 𝑢)) +N ((𝑦 ·N 𝑤) ·N (𝑥 ·N 𝑣))))
80703adant2 957 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑤N)
81623adant3 958 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → 𝑢N)
8280, 81, 25syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑤 ·N 𝑢) ∈ N)
83 mulasspig 6522 . . . . 5 ((𝑦N𝑦N ∧ (𝑤 ·N 𝑢) ∈ N) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))))
8445, 45, 82, 83syl3anc 1169 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))))
8558adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
8660adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
8763adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
8845, 45, 80, 85, 86, 81, 87caov4d 5705 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑦) ·N (𝑤 ·N 𝑢)) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
8984, 88eqtr3d 2115 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑢N) ∧ (𝑤N𝑣N)) → (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
9040, 89sylbir 133 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑦 ·N (𝑤 ·N 𝑢))) = ((𝑦 ·N 𝑤) ·N (𝑦 ·N 𝑢)))
911, 2, 16, 17, 18, 19, 27, 31, 35, 79, 90ecovidi 6241 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  cop 3401  (class class class)co 5532  [cec 6127  Ncnpi 6462   +N cpli 6463   ·N cmi 6464   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472   ·Q cmq 6473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540
This theorem is referenced by:  ltaddnq  6597  halfnqq  6600  addnqprl  6719  addnqpru  6720  prmuloclemcalc  6755  distrlem1prl  6772  distrlem1pru  6773  distrlem4prl  6774  distrlem4pru  6775
  Copyright terms: Public domain W3C validator