![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax10oe | GIF version |
Description: Quantifier Substitution for existential quantifiers. Analogue to ax10o 1643 but for ∃ rather than ∀. (Contributed by Jim Kingdon, 21-Dec-2017.) |
Ref | Expression |
---|---|
ax10oe | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ia3 106 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → (𝑥 = 𝑦 ∧ 𝜓))) | |
2 | 1 | alimi 1384 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝜓 → (𝑥 = 𝑦 ∧ 𝜓))) |
3 | exim 1530 | . . 3 ⊢ (∀𝑥(𝜓 → (𝑥 = 𝑦 ∧ 𝜓)) → (∃𝑥𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
5 | ax11e 1717 | . . 3 ⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑦𝜓)) | |
6 | 5 | sps 1470 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑦𝜓)) |
7 | 4, 6 | syld 44 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-11 1437 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |