ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11e GIF version

Theorem ax11e 1717
Description: Analogue to ax-11 1437 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
Assertion
Ref Expression
ax11e (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))

Proof of Theorem ax11e
StepHypRef Expression
1 equs5e 1716 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
2119.21bi 1490 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 → ∃𝑦𝜑))
32com12 30 1 (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-11 1437  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  ax10oe  1718  drex1  1719  sbcof2  1731  ax11ev  1749
  Copyright terms: Public domain W3C validator