| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax16 | GIF version | ||
| Description: Theorem showing that ax-16 1735 is redundant if ax-17 1459 is included in the
axiom system. The important part of the proof is provided by aev 1733.
See ax16ALT 1780 for an alternate proof that does not require ax-10 1436 or ax-12 1442. This theorem should not be referenced in any proof. Instead, use ax-16 1735 below so that theorems needing ax-16 1735 can be more easily identified. (Contributed by NM, 8-Nov-2006.) |
| Ref | Expression |
|---|---|
| ax16 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aev 1733 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑧) | |
| 2 | ax-17 1459 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 3 | sbequ12 1694 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 4 | 3 | biimpcd 157 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
| 5 | 2, 4 | alimdh 1396 | . . 3 ⊢ (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧[𝑧 / 𝑥]𝜑)) |
| 6 | 2 | hbsb3 1729 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑥[𝑧 / 𝑥]𝜑) |
| 7 | stdpc7 1693 | . . . 4 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑 → 𝜑)) | |
| 8 | 6, 2, 7 | cbv3h 1671 | . . 3 ⊢ (∀𝑧[𝑧 / 𝑥]𝜑 → ∀𝑥𝜑) |
| 9 | 5, 8 | syl6com 35 | . 2 ⊢ (∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑)) |
| 10 | 1, 9 | syl 14 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: dveeq2 1736 dveeq2or 1737 a16g 1785 exists2 2038 |
| Copyright terms: Public domain | W3C validator |