![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1691 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 1692 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 127 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 |
This theorem depends on definitions: df-bi 115 df-sb 1686 |
This theorem is referenced by: sbequ12r 1695 sbequ12a 1696 sbid 1697 ax16 1734 sb8h 1775 sb8eh 1776 sb8 1777 sb8e 1778 ax16ALT 1780 sbco 1883 sbcomxyyz 1887 sb9v 1895 sb6a 1905 mopick 2019 clelab 2203 sbab 2205 cbvralf 2571 cbvrexf 2572 cbvralsv 2588 cbvrexsv 2589 cbvrab 2599 sbhypf 2648 mob2 2772 reu2 2780 reu6 2781 sbcralt 2890 sbcrext 2891 sbcralg 2892 sbcreug 2894 cbvreucsf 2966 cbvrabcsf 2967 cbvopab1 3851 cbvopab1s 3853 csbopabg 3856 cbvmpt 3872 opelopabsb 4015 frind 4107 tfis 4324 findes 4344 opeliunxp 4413 ralxpf 4500 rexxpf 4501 cbviota 4892 csbiotag 4915 cbvriota 5498 csbriotag 5500 abrexex2g 5767 opabex3d 5768 opabex3 5769 abrexex2 5771 dfoprab4f 5839 uzind4s 8678 zsupcllemstep 10341 bezoutlemmain 10387 cbvrald 10598 bj-bdfindes 10744 bj-findes 10776 |
Copyright terms: Public domain | W3C validator |