![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceq | GIF version |
Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdceq.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
bdceq | ⊢ (BOUNDED 𝐴 ↔ BOUNDED 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceq.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2145 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | bdeq 10614 | . . 3 ⊢ (BOUNDED 𝑥 ∈ 𝐴 ↔ BOUNDED 𝑥 ∈ 𝐵) |
4 | 3 | albii 1399 | . 2 ⊢ (∀𝑥BOUNDED 𝑥 ∈ 𝐴 ↔ ∀𝑥BOUNDED 𝑥 ∈ 𝐵) |
5 | df-bdc 10632 | . 2 ⊢ (BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥 ∈ 𝐴) | |
6 | df-bdc 10632 | . 2 ⊢ (BOUNDED 𝐵 ↔ ∀𝑥BOUNDED 𝑥 ∈ 𝐵) | |
7 | 4, 5, 6 | 3bitr4i 210 | 1 ⊢ (BOUNDED 𝐴 ↔ BOUNDED 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∀wal 1282 = wceq 1284 ∈ wcel 1433 BOUNDED wbd 10603 BOUNDED wbdc 10631 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 ax-bd0 10604 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 df-bdc 10632 |
This theorem is referenced by: bdceqi 10634 |
Copyright terms: Public domain | W3C validator |