Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceq GIF version

Theorem bdceq 10633
Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdceq.1 𝐴 = 𝐵
Assertion
Ref Expression
bdceq (BOUNDED 𝐴BOUNDED 𝐵)

Proof of Theorem bdceq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdceq.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2145 . . . 4 (𝑥𝐴𝑥𝐵)
32bdeq 10614 . . 3 (BOUNDED 𝑥𝐴BOUNDED 𝑥𝐵)
43albii 1399 . 2 (∀𝑥BOUNDED 𝑥𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐵)
5 df-bdc 10632 . 2 (BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
6 df-bdc 10632 . 2 (BOUNDED 𝐵 ↔ ∀𝑥BOUNDED 𝑥𝐵)
74, 5, 63bitr4i 210 1 (BOUNDED 𝐴BOUNDED 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 103  wal 1282   = wceq 1284  wcel 1433  BOUNDED wbd 10603  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063  ax-bd0 10604
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077  df-bdc 10632
This theorem is referenced by:  bdceqi  10634
  Copyright terms: Public domain W3C validator