| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceq | Unicode version | ||
| Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdceq.1 |
|
| Ref | Expression |
|---|---|
| bdceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdceq.1 |
. . . . 5
| |
| 2 | 1 | eleq2i 2145 |
. . . 4
|
| 3 | 2 | bdeq 10614 |
. . 3
|
| 4 | 3 | albii 1399 |
. 2
|
| 5 | df-bdc 10632 |
. 2
| |
| 6 | df-bdc 10632 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 ax-bd0 10604 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 df-bdc 10632 |
| This theorem is referenced by: bdceqi 10634 |
| Copyright terms: Public domain | W3C validator |