Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcrab GIF version

Theorem bdcrab 10643
Description: A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcrab.1 BOUNDED 𝐴
bdcrab.2 BOUNDED 𝜑
Assertion
Ref Expression
bdcrab BOUNDED {𝑥𝐴𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bdcrab
StepHypRef Expression
1 bdcrab.1 . . . . 5 BOUNDED 𝐴
21bdeli 10637 . . . 4 BOUNDED 𝑥𝐴
3 bdcrab.2 . . . 4 BOUNDED 𝜑
42, 3ax-bdan 10606 . . 3 BOUNDED (𝑥𝐴𝜑)
54bdcab 10640 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-rab 2357 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
75, 6bdceqir 10635 1 BOUNDED {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1433  {cab 2067  {crab 2352  BOUNDED wbd 10603  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063  ax-bd0 10604  ax-bdan 10606  ax-bdsb 10613
This theorem depends on definitions:  df-bi 115  df-clab 2068  df-cleq 2074  df-clel 2077  df-rab 2357  df-bdc 10632
This theorem is referenced by:  bdrabexg  10697
  Copyright terms: Public domain W3C validator