Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bds GIF version

Theorem bds 10642
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 10613; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 10613. (Contributed by BJ, 19-Nov-2019.)
Hypotheses
Ref Expression
bds.bd BOUNDED 𝜑
bds.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bds BOUNDED 𝜓
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem bds
StepHypRef Expression
1 bds.bd . . . 4 BOUNDED 𝜑
21bdcab 10640 . . 3 BOUNDED {𝑥𝜑}
3 bds.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43cbvabv 2202 . . 3 {𝑥𝜑} = {𝑦𝜓}
52, 4bdceqi 10634 . 2 BOUNDED {𝑦𝜓}
65bdph 10641 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  {cab 2067  BOUNDED wbd 10603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-bd0 10604  ax-bdsb 10613
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-bdc 10632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator