Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc GIF version

Theorem bdeqsuc 10672
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc BOUNDED 𝑥 = suc 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 10671 . . . 4 BOUNDED suc 𝑦
21bdss 10655 . . 3 BOUNDED 𝑥 ⊆ suc 𝑦
3 bdcv 10639 . . . . . . 7 BOUNDED 𝑥
43bdss 10655 . . . . . 6 BOUNDED 𝑦𝑥
53bdsnss 10664 . . . . . 6 BOUNDED {𝑦} ⊆ 𝑥
64, 5ax-bdan 10606 . . . . 5 BOUNDED (𝑦𝑥 ∧ {𝑦} ⊆ 𝑥)
7 unss 3146 . . . . 5 ((𝑦𝑥 ∧ {𝑦} ⊆ 𝑥) ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
86, 7bd0 10615 . . . 4 BOUNDED (𝑦 ∪ {𝑦}) ⊆ 𝑥
9 df-suc 4126 . . . . 5 suc 𝑦 = (𝑦 ∪ {𝑦})
109sseq1i 3023 . . . 4 (suc 𝑦𝑥 ↔ (𝑦 ∪ {𝑦}) ⊆ 𝑥)
118, 10bd0r 10616 . . 3 BOUNDED suc 𝑦𝑥
122, 11ax-bdan 10606 . 2 BOUNDED (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥)
13 eqss 3014 . 2 (𝑥 = suc 𝑦 ↔ (𝑥 ⊆ suc 𝑦 ∧ suc 𝑦𝑥))
1412, 13bd0r 10616 1 BOUNDED 𝑥 = suc 𝑦
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  cun 2971  wss 2973  {csn 3398  suc csuc 4120  BOUNDED wbd 10603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-bd0 10604  ax-bdan 10606  ax-bdor 10607  ax-bdal 10609  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-suc 4126  df-bdc 10632
This theorem is referenced by:  bj-bdsucel  10673  bj-nn0suc0  10745
  Copyright terms: Public domain W3C validator