ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3404
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3412. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3398 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1283 . . . 4 class 𝑥
54, 1wceq 1284 . . 3 wff 𝑥 = 𝐴
65, 3cab 2067 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1284 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3409  elsng  3413  csbsng  3453  rabsn  3459  pw0  3532  iunid  3733  dfiota2  4888  uniabio  4897  dfimafn2  5244  fnsnfv  5253  snec  6190  bdcsn  10661
  Copyright terms: Public domain W3C validator