![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-sn | GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3412. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 3398 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1283 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1284 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2067 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1284 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff set class |
This definition is referenced by: sneq 3409 elsng 3413 csbsng 3453 rabsn 3459 pw0 3532 iunid 3733 dfiota2 4888 uniabio 4897 dfimafn2 5244 fnsnfv 5253 snec 6190 bdcsn 10661 |
Copyright terms: Public domain | W3C validator |