Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1g GIF version

Theorem bdinex1g 10692
Description: Bounded version of inex1g 3914. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdinex1g.bd BOUNDED 𝐵
Assertion
Ref Expression
bdinex1g (𝐴𝑉 → (𝐴𝐵) ∈ V)

Proof of Theorem bdinex1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ineq1 3160 . . 3 (𝑥 = 𝐴 → (𝑥𝐵) = (𝐴𝐵))
21eleq1d 2147 . 2 (𝑥 = 𝐴 → ((𝑥𝐵) ∈ V ↔ (𝐴𝐵) ∈ V))
3 bdinex1g.bd . . 3 BOUNDED 𝐵
4 vex 2604 . . 3 𝑥 ∈ V
53, 4bdinex1 10690 . 2 (𝑥𝐵) ∈ V
62, 5vtoclg 2658 1 (𝐴𝑉 → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  Vcvv 2601  cin 2972  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-bdc 10632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator