Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 GIF version

Theorem bdinex1 10690
Description: Bounded version of inex1 3912. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd BOUNDED 𝐵
bdinex1.1 𝐴 ∈ V
Assertion
Ref Expression
bdinex1 (𝐴𝐵) ∈ V

Proof of Theorem bdinex1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4 𝐴 ∈ V
2 bdinex1.bd . . . . . 6 BOUNDED 𝐵
32bdeli 10637 . . . . 5 BOUNDED 𝑦𝐵
43bdzfauscl 10681 . . . 4 (𝐴 ∈ V → ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
51, 4ax-mp 7 . . 3 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵))
6 dfcleq 2075 . . . . 5 (𝑥 = (𝐴𝐵) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (𝐴𝐵)))
7 elin 3155 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
87bibi2i 225 . . . . . 6 ((𝑦𝑥𝑦 ∈ (𝐴𝐵)) ↔ (𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
98albii 1399 . . . . 5 (∀𝑦(𝑦𝑥𝑦 ∈ (𝐴𝐵)) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
106, 9bitri 182 . . . 4 (𝑥 = (𝐴𝐵) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
1110exbii 1536 . . 3 (∃𝑥 𝑥 = (𝐴𝐵) ↔ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
125, 11mpbir 144 . 2 𝑥 𝑥 = (𝐴𝐵)
1312issetri 2608 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wal 1282   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  cin 2972  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-bdc 10632
This theorem is referenced by:  bdinex2  10691  bdinex1g  10692  bdpeano5  10738
  Copyright terms: Public domain W3C validator