| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsep1 | GIF version | ||
| Description: Version of ax-bdsep 10675 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsep1.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| bdsep1 | ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsep1.1 | . . 3 ⊢ BOUNDED 𝜑 | |
| 2 | 1 | ax-bdsep 10675 | . 2 ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 3 | 2 | spi 1469 | 1 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 BOUNDED wbd 10603 |
| This theorem was proved from axioms: ax-mp 7 ax-4 1440 ax-bdsep 10675 |
| This theorem is referenced by: bdsep2 10677 bdzfauscl 10681 bdbm1.3ii 10682 bj-axemptylem 10683 bj-nalset 10686 |
| Copyright terms: Public domain | W3C validator |