Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexd GIF version

Theorem bdssexd 10696
Description: Bounded version of ssexd 3918. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexd.1 (𝜑𝐵𝐶)
bdssexd.2 (𝜑𝐴𝐵)
bdssexd.bd BOUNDED 𝐴
Assertion
Ref Expression
bdssexd (𝜑𝐴 ∈ V)

Proof of Theorem bdssexd
StepHypRef Expression
1 bdssexd.2 . 2 (𝜑𝐴𝐵)
2 bdssexd.1 . 2 (𝜑𝐵𝐶)
3 bdssexd.bd . . 3 BOUNDED 𝐴
43bdssexg 10695 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
51, 2, 4syl2anc 403 1 (𝜑𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  Vcvv 2601  wss 2973  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-bdc 10632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator