Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexg GIF version

Theorem bdssexg 10695
Description: Bounded version of ssexg 3917. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdssexg.bd BOUNDED 𝐴
Assertion
Ref Expression
bdssexg ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem bdssexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3021 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
21imbi1d 229 . . 3 (𝑥 = 𝐵 → ((𝐴𝑥𝐴 ∈ V) ↔ (𝐴𝐵𝐴 ∈ V)))
3 bdssexg.bd . . . 4 BOUNDED 𝐴
4 vex 2604 . . . 4 𝑥 ∈ V
53, 4bdssex 10693 . . 3 (𝐴𝑥𝐴 ∈ V)
62, 5vtoclg 2658 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 ∈ V))
76impcom 123 1 ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  wss 2973  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-bdc 10632
This theorem is referenced by:  bdssexd  10696  bdrabexg  10697  bdunexb  10711
  Copyright terms: Public domain W3C validator