Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-elssuniab GIF version

Theorem bj-elssuniab 10601
Description: Version of elssuni 3629 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-elssuniab.nf 𝑥𝐴
Assertion
Ref Expression
bj-elssuniab (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 {𝑥𝜑}))

Proof of Theorem bj-elssuniab
StepHypRef Expression
1 sbc8g 2822 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))
2 elssuni 3629 . 2 (𝐴 ∈ {𝑥𝜑} → 𝐴 {𝑥𝜑})
31, 2syl6bi 161 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 {𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  {cab 2067  wnfc 2206  [wsbc 2815  wss 2973   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-in 2979  df-ss 2986  df-uni 3602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator