Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sseq GIF version

Theorem bj-sseq 10602
Description: If two converse inclusions are characterized each by a formula, then equality is characterized by the conjunction of these formulas. (Contributed by BJ, 30-Nov-2019.)
Hypotheses
Ref Expression
bj-sseq.1 (𝜑 → (𝜓𝐴𝐵))
bj-sseq.2 (𝜑 → (𝜒𝐵𝐴))
Assertion
Ref Expression
bj-sseq (𝜑 → ((𝜓𝜒) ↔ 𝐴 = 𝐵))

Proof of Theorem bj-sseq
StepHypRef Expression
1 bj-sseq.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 bj-sseq.2 . . 3 (𝜑 → (𝜒𝐵𝐴))
31, 2anbi12d 456 . 2 (𝜑 → ((𝜓𝜒) ↔ (𝐴𝐵𝐵𝐴)))
4 eqss 3014 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
53, 4syl6bbr 196 1 (𝜑 → ((𝜓𝜒) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator