| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem4 | GIF version | ||
| Description: Lemma for bj-inf2vn2 10770. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inf2vnlem4 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-inf2vnlem2 10766 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)))) | |
| 2 | nfv 1461 | . . . 4 ⊢ Ⅎ𝑧(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
| 3 | nfv 1461 | . . . 4 ⊢ Ⅎ𝑧(𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) | |
| 4 | nfv 1461 | . . . 4 ⊢ Ⅎ𝑢(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) | |
| 5 | nfv 1461 | . . . 4 ⊢ Ⅎ𝑢(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
| 6 | eleq1 2141 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴)) | |
| 7 | eleq1 2141 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝑍 ↔ 𝑡 ∈ 𝑍)) | |
| 8 | 6, 7 | imbi12d 232 | . . . . 5 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
| 9 | 8 | biimpd 142 | . . . 4 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) → (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
| 10 | eleq1 2141 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) | |
| 11 | eleq1 2141 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝑍 ↔ 𝑢 ∈ 𝑍)) | |
| 12 | 10, 11 | imbi12d 232 | . . . . 5 ⊢ (𝑧 = 𝑢 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍))) |
| 13 | 12 | biimprd 156 | . . . 4 ⊢ (𝑧 = 𝑢 → ((𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
| 14 | 2, 3, 4, 5, 9, 13 | setindis 10762 | . . 3 ⊢ (∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)) → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) |
| 15 | 1, 14 | syl6 33 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
| 16 | dfss2 2988 | . 2 ⊢ (𝐴 ⊆ 𝑍 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) | |
| 17 | 15, 16 | syl6ibr 160 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 ∀wal 1282 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 ⊆ wss 2973 ∅c0 3251 suc csuc 4120 Ind wind 10721 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-suc 4126 df-bj-ind 10722 |
| This theorem is referenced by: bj-inf2vn2 10770 |
| Copyright terms: Public domain | W3C validator |