| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-rspg | GIF version | ||
| Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2698 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-rspg.nfa | ⊢ Ⅎ𝑥𝐴 |
| bj-rspg.nfb | ⊢ Ⅎ𝑥𝐵 |
| bj-rspg.nf2 | ⊢ Ⅎ𝑥𝜓 |
| bj-rspg.is | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-rspg | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-rspg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | bj-rspg.nfb | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | bj-rspg.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 1, 2, 3 | bj-rspgt 10596 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) |
| 5 | bj-rspg.is | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
| 6 | 4, 5 | mpg 1380 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 Ⅎwnf 1389 ∈ wcel 1433 Ⅎwnfc 2206 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 |
| This theorem is referenced by: bj-bdfindisg 10743 bj-findisg 10775 |
| Copyright terms: Public domain | W3C validator |