Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspgt GIF version

Theorem bj-rspgt 10596
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2698 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa 𝑥𝐴
bj-rspg.nfb 𝑥𝐵
bj-rspg.nf2 𝑥𝜓
Assertion
Ref Expression
bj-rspgt (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓)))

Proof of Theorem bj-rspgt
StepHypRef Expression
1 eleq1 2141 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
21imbi1d 229 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝐵 → (∀𝑥𝐵 𝜑𝜑)) ↔ (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜑))))
32biimpd 142 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐵 → (∀𝑥𝐵 𝜑𝜑)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜑))))
4 imim2 54 . . . . . . . 8 ((𝜑𝜓) → ((∀𝑥𝐵 𝜑𝜑) → (∀𝑥𝐵 𝜑𝜓)))
54imim2d 53 . . . . . . 7 ((𝜑𝜓) → ((𝐴𝐵 → (∀𝑥𝐵 𝜑𝜑)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
63, 5syl9 71 . . . . . 6 (𝑥 = 𝐴 → ((𝜑𝜓) → ((𝑥𝐵 → (∀𝑥𝐵 𝜑𝜑)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))))
76a2i 11 . . . . 5 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝑥𝐵 → (∀𝑥𝐵 𝜑𝜑)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))))
87alimi 1384 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵 → (∀𝑥𝐵 𝜑𝜑)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))))
9 bj-rspg.nfa . . . . 5 𝑥𝐴
10 bj-rspg.nfb . . . . . . 7 𝑥𝐵
119, 10nfel 2227 . . . . . 6 𝑥 𝐴𝐵
12 nfra1 2397 . . . . . . 7 𝑥𝑥𝐵 𝜑
13 bj-rspg.nf2 . . . . . . 7 𝑥𝜓
1412, 13nfim 1504 . . . . . 6 𝑥(∀𝑥𝐵 𝜑𝜓)
1511, 14nfim 1504 . . . . 5 𝑥(𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
16 rsp 2411 . . . . . . 7 (∀𝑥𝐵 𝜑 → (𝑥𝐵𝜑))
1716a1i 9 . . . . . 6 (𝑥 = 𝐴 → (∀𝑥𝐵 𝜑 → (𝑥𝐵𝜑)))
1817com23 77 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵 → (∀𝑥𝐵 𝜑𝜑)))
199, 15, 18bj-vtoclgft 10585 . . . 4 (∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵 → (∀𝑥𝐵 𝜑𝜑)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))) → (𝐴𝐵 → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
208, 19syl 14 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
2120pm2.43d 49 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
2221com23 77 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1282   = wceq 1284  wnf 1389  wcel 1433  wnfc 2206  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603
This theorem is referenced by:  bj-rspg  10597
  Copyright terms: Public domain W3C validator