| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvalh | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| cbvalh.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| cbvalh.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| cbvalh.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalh | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalh.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | cbvalh.2 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | cbvalh.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | biimpd 142 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 5 | 1, 2, 4 | cbv3h 1671 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 6 | 3 | equcoms 1634 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| 7 | 6 | biimprd 156 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 8 | 2, 1, 7 | cbv3h 1671 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 9 | 5, 8 | impbii 124 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: cbval 1677 sb8h 1775 cbvalv 1835 sb9v 1895 sb8euh 1964 |
| Copyright terms: Public domain | W3C validator |