ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalh GIF version

Theorem cbvalh 1676
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
cbvalh.1 (𝜑 → ∀𝑦𝜑)
cbvalh.2 (𝜓 → ∀𝑥𝜓)
cbvalh.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalh (∀𝑥𝜑 ↔ ∀𝑦𝜓)

Proof of Theorem cbvalh
StepHypRef Expression
1 cbvalh.1 . . 3 (𝜑 → ∀𝑦𝜑)
2 cbvalh.2 . . 3 (𝜓 → ∀𝑥𝜓)
3 cbvalh.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 142 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3h 1671 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63equcoms 1634 . . . 4 (𝑦 = 𝑥 → (𝜑𝜓))
76biimprd 156 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3h 1671 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 124 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  cbval  1677  sb8h  1775  cbvalv  1835  sb9v  1895  sb8euh  1964
  Copyright terms: Public domain W3C validator