| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvalh | Unicode version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| cbvalh.1 |
|
| cbvalh.2 |
|
| cbvalh.3 |
|
| Ref | Expression |
|---|---|
| cbvalh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalh.1 |
. . 3
| |
| 2 | cbvalh.2 |
. . 3
| |
| 3 | cbvalh.3 |
. . . 4
| |
| 4 | 3 | biimpd 142 |
. . 3
|
| 5 | 1, 2, 4 | cbv3h 1671 |
. 2
|
| 6 | 3 | equcoms 1634 |
. . . 4
|
| 7 | 6 | biimprd 156 |
. . 3
|
| 8 | 2, 1, 7 | cbv3h 1671 |
. 2
|
| 9 | 5, 8 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: cbval 1677 sb8h 1775 cbvalv 1835 sb9v 1895 sb8euh 1964 |
| Copyright terms: Public domain | W3C validator |