| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexd | GIF version | ||
| Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 1934. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.) |
| Ref | Expression |
|---|---|
| cbvexd.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvexd.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbvexd.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbvexd | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvexd.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1452 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | cbvexd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | 3 | nfrd 1453 | . 2 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
| 5 | cbvexd.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 2, 4, 5 | cbvexdh 1842 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1389 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: cbvexdva 1845 vtoclgft 2649 bdsepnft 10678 strcollnft 10779 |
| Copyright terms: Public domain | W3C validator |