| Step | Hyp | Ref
| Expression |
| 1 | | strcoll2 10778 |
. 2
⊢
(∀𝑥 ∈
𝑎 ∃𝑦𝜑 → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
| 2 | | nfnf1 1476 |
. . . . 5
⊢
Ⅎ𝑏Ⅎ𝑏𝜑 |
| 3 | 2 | nfal 1508 |
. . . 4
⊢
Ⅎ𝑏∀𝑦Ⅎ𝑏𝜑 |
| 4 | 3 | nfal 1508 |
. . 3
⊢
Ⅎ𝑏∀𝑥∀𝑦Ⅎ𝑏𝜑 |
| 5 | | nfa2 1511 |
. . . 4
⊢
Ⅎ𝑦∀𝑥∀𝑦Ⅎ𝑏𝜑 |
| 6 | | nfvd 1462 |
. . . . 5
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏 𝑦 ∈ 𝑧) |
| 7 | | nfa1 1474 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑥Ⅎ𝑏𝜑 |
| 8 | | nfcvd 2220 |
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏𝑎) |
| 9 | | sp 1441 |
. . . . . . . 8
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏𝜑) |
| 10 | 7, 8, 9 | nfrexdxy 2399 |
. . . . . . 7
⊢
(∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑) |
| 11 | 10 | sps 1470 |
. . . . . 6
⊢
(∀𝑦∀𝑥Ⅎ𝑏𝜑 → Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑) |
| 12 | 11 | alcoms 1405 |
. . . . 5
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑) |
| 13 | 6, 12 | nfbid 1520 |
. . . 4
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
| 14 | 5, 13 | nfald 1683 |
. . 3
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
| 15 | | nfv 1461 |
. . . . . 6
⊢
Ⅎ𝑦 𝑧 = 𝑏 |
| 16 | 5, 15 | nfan 1497 |
. . . . 5
⊢
Ⅎ𝑦(∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) |
| 17 | | elequ2 1641 |
. . . . . . 7
⊢ (𝑧 = 𝑏 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑏)) |
| 18 | 17 | adantl 271 |
. . . . . 6
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑏)) |
| 19 | 18 | bibi1d 231 |
. . . . 5
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → ((𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ (𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |
| 20 | 16, 19 | albid 1546 |
. . . 4
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → (∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |
| 21 | 20 | ex 113 |
. . 3
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → (𝑧 = 𝑏 → (∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)))) |
| 22 | 4, 14, 21 | cbvexd 1843 |
. 2
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |
| 23 | 1, 22 | syl5ib 152 |
1
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |