ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab GIF version

Theorem cdeqab 2805
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqab CondEq(𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cdeqab
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 2801 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32abbidv 2196 . 2 (𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
43cdeqi 2800 1 CondEq(𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  {cab 2067  CondEqwcdeq 2798
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-cdeq 2799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator