![]() |
Intuitionistic Logic Explorer Theorem List (p. 29 of 108) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cdeqri 2801 | Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑥 = 𝑦 → 𝜑) | ||
Theorem | cdeqth 2802 | Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ 𝜑 ⇒ ⊢ CondEq(𝑥 = 𝑦 → 𝜑) | ||
Theorem | cdeqnot 2803 | Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) | ||
Theorem | cdeqal 2804* | Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
Theorem | cdeqab 2805* | Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑧 ∣ 𝜑} = {𝑧 ∣ 𝜓}) | ||
Theorem | cdeqal1 2806* | Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | cdeqab1 2807* | Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | ||
Theorem | cdeqim 2808 | Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ CondEq(𝑥 = 𝑦 → (𝜒 ↔ 𝜃)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
Theorem | cdeqcv 2809 | Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝑥 = 𝑦) | ||
Theorem | cdeqeq 2810 | Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | cdeqel 2811 | Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | nfcdeq 2812* | If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to Ⅎ, then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that Ⅎ𝑥𝜑 is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | nfccdeq 2813* | Variation of nfcdeq 2812 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | ru 2814 |
Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 3896. (Contributed by NM, 7-Aug-1994.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Syntax | wsbc 2815 | Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑." |
wff [𝐴 / 𝑥]𝜑 | ||
Definition | df-sbc 2816 |
Define the proper substitution of a class for a set.
When 𝐴 is a proper class, our definition evaluates to false. This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 2840 for our definition, which always evaluates to true for proper classes. Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 2817 below). Unfortunately, Quine's definition requires a recursive syntactical breakdown of 𝜑, and it does not seem possible to express it with a single closed formula. If we did not want to commit to any specific proper class behavior, we could use this definition only to prove theorem dfsbcq 2817, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 2816 in the form of sbc8g 2822. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 2816 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class. The related definition df-csb defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | dfsbcq 2817 |
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 2816 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 2818 instead of df-sbc 2816. (dfsbcq2 2818 is needed because
unlike Quine we do not overload the df-sb 1686 syntax.) As a consequence of
these theorems, we can derive sbc8g 2822, which is a weaker version of
df-sbc 2816 that leaves substitution undefined when 𝐴 is a
proper class.
However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 2822, so we will allow direct use of df-sbc 2816. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | ||
Theorem | dfsbcq2 2818 | This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1686 and substitution for class variables df-sbc 2816. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2817. (Contributed by NM, 31-Dec-2016.) |
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbsbc 2819 | Show that df-sb 1686 and df-sbc 2816 are equivalent when the class term 𝐴 in df-sbc 2816 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1686 for proofs involving df-sbc 2816. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | sbceq1d 2820 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | ||
Theorem | sbceq1dd 2821 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) | ||
Theorem | sbc8g 2822 | This is the closest we can get to df-sbc 2816 if we start from dfsbcq 2817 (see its comments) and dfsbcq2 2818. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||
Theorem | sbcex 2823 | By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | ||
Theorem | sbceq1a 2824 | Equality theorem for class substitution. Class version of sbequ12 1694. (Contributed by NM, 26-Sep-2003.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbceq2a 2825 | Equality theorem for class substitution. Class version of sbequ12r 1695. (Contributed by NM, 4-Jan-2017.) |
⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | spsbc 2826 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1698 and rspsbc 2896. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | spsbcd 2827 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1698 and rspsbc 2896. (Contributed by Mario Carneiro, 9-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcth 2828 | A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcthdv 2829* | Deduction version of sbcth 2828. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcid 2830 | An identity theorem for substitution. See sbid 1697. (Contributed by Mario Carneiro, 18-Feb-2017.) |
⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | nfsbc1d 2831 | Deduction version of nfsbc1 2832. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) | ||
Theorem | nfsbc1 2832 | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbc1v 2833* | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbcd 2834 | Deduction version of nfsbc 2835. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
Theorem | nfsbc 2835 | Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
Theorem | sbcco 2836* | A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcco2 2837* | A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbc5 2838* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | sbc6g 2839* | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbc6 2840* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) | ||
Theorem | sbc7 2841* | An equivalence for class substitution in the spirit of df-clab 2068. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | cbvsbc 2842 | Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbcv 2843* | Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | sbciegft 2844* | Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 2845.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbciegf 2845* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcieg 2846* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcie2g 2847* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 2848 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) | ||
Theorem | sbcie 2848* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbciedf 2849* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied 2850* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied2 2851* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | elrabsf 2852 | Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2747 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | ||
Theorem | eqsbc3 2853* | Substitution applied to an atomic wff. Set theory version of eqsb3 2182. (Contributed by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | sbcng 2854 | Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcimg 2855 | Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcan 2856 | Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcang 2857 | Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcor 2858 | Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) |
⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcorg 2859 | Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcbig 2860 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcn1 2861 | Move negation in and out of class substitution. One direction of sbcng 2854 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcim1 2862 | Distribution of class substitution over implication. One direction of sbcimg 2855 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi1 2863 | Distribution of class substitution over biconditional. One direction of sbcbig 2860 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi2 2864 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcal 2865* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) |
⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcalg 2866* | Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) | ||
Theorem | sbcex2 2867* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcexg 2868* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) | ||
Theorem | sbceqal 2869* | A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
Theorem | sbeqalb 2870* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
Theorem | sbcbid 2871 | Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbidv 2872* | Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbii 2873 | Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
Theorem | eqsbc3r 2874* | eqsbc3 2853 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
Theorem | sbc3an 2875 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcel1v 2876* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
Theorem | sbcel2gv 2877* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | sbcel21v 2878* | Class substitution into a membership relation. One direction of sbcel2gv 2877 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
Theorem | sbcimdv 2879* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1386). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbctt 2880 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgf 2881 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc19.21g 2882 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcg 2883* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 2881. (Contributed by Alan Sare, 10-Nov-2012.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc2iegf 2884* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
Theorem | sbc2ie 2885* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
Theorem | sbc2iedv 2886* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
Theorem | sbc3ie 2887* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) | ||
Theorem | sbccomlem 2888* | Lemma for sbccom 2889. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom 2889* | Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbcralt 2890* | Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrext 2891* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcralg 2892* | Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrex 2893* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcreug 2894* | Interchange class substitution and restricted uniqueness quantifier. (Contributed by NM, 24-Feb-2013.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcabel 2895* | Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) | ||
Theorem | rspsbc 2896* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1698 and spsbc 2826. See also rspsbca 2897 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | rspsbca 2897* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → [𝐴 / 𝑥]𝜑) | ||
Theorem | rspesbca 2898* | Existence form of rspsbca 2897. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | spesbc 2899 | Existence form of spsbc 2826. (Contributed by Mario Carneiro, 18-Nov-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) | ||
Theorem | spesbcd 2900 | form of spsbc 2826. (Contributed by Mario Carneiro, 9-Feb-2017.) |
⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |