ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqex GIF version

Theorem ceqex 2722
Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
Assertion
Ref Expression
ceqex (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 19.8a 1522 . . 3 (𝑥 = 𝐴 → ∃𝑥 𝑥 = 𝐴)
2 isset 2605 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
31, 2sylibr 132 . 2 (𝑥 = 𝐴𝐴 ∈ V)
4 eqeq2 2090 . . . 4 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
54anbi1d 452 . . . . . 6 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
65exbidv 1746 . . . . 5 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
76bibi2d 230 . . . 4 (𝑦 = 𝐴 → ((𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))))
84, 7imbi12d 232 . . 3 (𝑦 = 𝐴 → ((𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))) ↔ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))))
9 19.8a 1522 . . . . 5 ((𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
109ex 113 . . . 4 (𝑥 = 𝑦 → (𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)))
11 vex 2604 . . . . . 6 𝑦 ∈ V
1211alexeq 2721 . . . . 5 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝑦𝜑))
13 sp 1441 . . . . . 6 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
1413com12 30 . . . . 5 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
1512, 14syl5bir 151 . . . 4 (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → 𝜑))
1610, 15impbid 127 . . 3 (𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
178, 16vtoclg 2658 . 2 (𝐴 ∈ V → (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))))
183, 17mpcom 36 1 (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603
This theorem is referenced by:  ceqsexg  2723  sbc6g  2839
  Copyright terms: Public domain W3C validator