| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsexg | GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.) |
| Ref | Expression |
|---|---|
| ceqsexg.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsexg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2219 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfe1 1425 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝑥 = 𝐴 ∧ 𝜑) | |
| 3 | ceqsexg.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfbi 1521 | . 2 ⊢ Ⅎ𝑥(∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| 5 | ceqex 2722 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 6 | ceqsexg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | bibi12d 233 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜑) ↔ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓))) |
| 8 | biid 169 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
| 9 | 1, 4, 7, 8 | vtoclgf 2657 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 Ⅎwnf 1389 ∃wex 1421 ∈ wcel 1433 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 |
| This theorem is referenced by: ceqsexgv 2724 |
| Copyright terms: Public domain | W3C validator |