| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > class2seteq | GIF version | ||
| Description: Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
| Ref | Expression |
|---|---|
| class2seteq | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | ax-1 5 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) | |
| 3 | 2 | ralrimiv 2433 | . . . 4 ⊢ (𝐴 ∈ V → ∀𝑥 ∈ 𝐴 𝐴 ∈ V) |
| 4 | rabid2 2530 | . . . 4 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐴 ∈ V) | |
| 5 | 3, 4 | sylibr 132 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V}) |
| 6 | 5 | eqcomd 2086 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
| 7 | 1, 6 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 ∀wral 2348 {crab 2352 Vcvv 2601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 df-rab 2357 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |