ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coss1 GIF version

Theorem coss1 4509
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
coss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem coss1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (𝐴𝐵𝐴𝐵)
21ssbrd 3826 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑧𝑦𝐵𝑧))
32anim2d 330 . . . 4 (𝐴𝐵 → ((𝑥𝐶𝑦𝑦𝐴𝑧) → (𝑥𝐶𝑦𝑦𝐵𝑧)))
43eximdv 1801 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
54ssopab2dv 4033 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
6 df-co 4372 . 2 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
7 df-co 4372 . 2 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
85, 6, 73sstr4g 3040 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wex 1421  wss 2973   class class class wbr 3785  {copab 3838  ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986  df-br 3786  df-opab 3840  df-co 4372
This theorem is referenced by:  coeq1  4511  funss  4940  tposss  5884
  Copyright terms: Public domain W3C validator