ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetid GIF version

Theorem issetid 4508
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
issetid (𝐴 ∈ V ↔ 𝐴 I 𝐴)

Proof of Theorem issetid
StepHypRef Expression
1 ididg 4507 . 2 (𝐴 ∈ V → 𝐴 I 𝐴)
2 reli 4483 . . 3 Rel I
32brrelexi 4402 . 2 (𝐴 I 𝐴𝐴 ∈ V)
41, 3impbii 124 1 (𝐴 ∈ V ↔ 𝐴 I 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103  wcel 1433  Vcvv 2601   class class class wbr 3785   I cid 4043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator