ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbabg GIF version

Theorem csbabg 2963
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
csbabg (𝐴𝑉𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑})
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem csbabg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbccom 2889 . . . 4 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
2 df-clab 2068 . . . . 5 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
3 sbsbc 2819 . . . . 5 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
42, 3bitri 182 . . . 4 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
5 df-clab 2068 . . . . . 6 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
6 sbsbc 2819 . . . . . 6 ([𝑧 / 𝑦]𝜑[𝑧 / 𝑦]𝜑)
75, 6bitri 182 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
87sbcbii 2873 . . . 4 ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
91, 4, 83bitr4i 210 . . 3 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑})
10 sbcel2g 2927 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ 𝑧𝐴 / 𝑥{𝑦𝜑}))
119, 10syl5rbb 191 . 2 (𝐴𝑉 → (𝑧𝐴 / 𝑥{𝑦𝜑} ↔ 𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
1211eqrdv 2079 1 (𝐴𝑉𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  [wsb 1685  {cab 2067  [wsbc 2815  csb 2908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909
This theorem is referenced by:  csbsng  3453  csbunig  3609  csbxpg  4439  csbdmg  4547  csbrng  4802
  Copyright terms: Public domain W3C validator