![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbabg | GIF version |
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
csbabg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccom 2889 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
2 | df-clab 2068 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
3 | sbsbc 2819 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
4 | 2, 3 | bitri 182 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) |
5 | df-clab 2068 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
6 | sbsbc 2819 | . . . . . 6 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
7 | 5, 6 | bitri 182 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) |
8 | 7 | sbcbii 2873 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) |
9 | 1, 4, 8 | 3bitr4i 210 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑}) |
10 | sbcel2g 2927 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑})) | |
11 | 9, 10 | syl5rbb 191 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
12 | 11 | eqrdv 2079 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 [wsb 1685 {cab 2067 [wsbc 2815 ⦋csb 2908 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 |
This theorem is referenced by: csbsng 3453 csbunig 3609 csbxpg 4439 csbdmg 4547 csbrng 4802 |
Copyright terms: Public domain | W3C validator |