| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbied2 | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| csbied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| csbied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| csbied2 | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | id 19 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 3 | csbied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | sylan9eqr 2135 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
| 5 | csbied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) | |
| 6 | 4, 5 | syldan 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
| 7 | 1, 6 | csbied 2948 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ⦋csb 2908 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |