![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syldan | GIF version |
Description: A syllogism deduction with conjoined antecents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.) |
Ref | Expression |
---|---|
syldan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
syldan.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syldan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldan.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | syldan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
3 | 2 | expcom 114 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜃)) |
4 | 3 | adantrd 273 | . 2 ⊢ (𝜒 → ((𝜑 ∧ 𝜓) → 𝜃)) |
5 | 1, 4 | mpcom 36 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia3 106 |
This theorem is referenced by: sylan2 280 dn1dc 901 stoic2a 1358 sbcied2 2851 csbied2 2949 elpw2g 3931 pofun 4067 tfi 4323 fnbr 5021 caovlem2d 5713 grprinvlem 5715 caofcom 5754 fnexALT 5760 tfri3 5976 f1domg 6261 fundmfi 6389 archnqq 6607 nqpru 6742 ltaddpr 6787 1idsr 6945 addgt0sr 6952 gt0ap0 7725 ap0gt0 7738 mulgt1 7941 gt0div 7948 ge0div 7949 ltdiv2 7965 creur 8036 avgle1 8271 recnz 8440 qreccl 8727 xrrege0 8892 peano2fzor 9241 flqltnz 9289 flqdiv 9323 zmodcl 9346 frecuzrdgfn 9414 frecuzrdgcl 9415 frecuzrdgsuc 9417 iseqfveq 9450 isermono 9457 iseqsplit 9458 iseqid 9467 iseqz 9469 le2sq2 9551 bcpasc 9693 caucvgrelemcau 9866 caucvgre 9867 r19.2uz 9879 sqrtgt0 9920 clim2iser 10175 clim2iser2 10176 climub 10182 serif0 10189 dvdssubr 10241 divalgmod 10327 divgcdnn 10366 ialgfx 10434 eucialgcvga 10440 lcmcllem 10449 lcmneg 10456 isprm6 10526 cncongrprm 10536 |
Copyright terms: Public domain | W3C validator |