ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ddifstab GIF version

Theorem ddifstab 3104
Description: A class is equal to its double complement if and only if it is stable (that is, membership in it is a stable property). (Contributed by BJ, 12-Dec-2021.)
Assertion
Ref Expression
ddifstab ((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥STAB 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem ddifstab
StepHypRef Expression
1 dfcleq 2075 . 2 ((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥(𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴))
2 eldif 2982 . . . . . . 7 (𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)))
3 vex 2604 . . . . . . . 8 𝑥 ∈ V
43biantrur 297 . . . . . . 7 𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)))
5 eldif 2982 . . . . . . . . 9 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
63biantrur 297 . . . . . . . . 9 𝑥𝐴 ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
75, 6bitr4i 185 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
87notbii 626 . . . . . . 7 𝑥 ∈ (V ∖ 𝐴) ↔ ¬ ¬ 𝑥𝐴)
92, 4, 83bitr2i 206 . . . . . 6 (𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ ¬ ¬ 𝑥𝐴)
109bibi1i 226 . . . . 5 ((𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
11 bi1 116 . . . . . 6 ((¬ ¬ 𝑥𝐴𝑥𝐴) → (¬ ¬ 𝑥𝐴𝑥𝐴))
12 id 19 . . . . . . 7 ((¬ ¬ 𝑥𝐴𝑥𝐴) → (¬ ¬ 𝑥𝐴𝑥𝐴))
13 notnot 591 . . . . . . 7 (𝑥𝐴 → ¬ ¬ 𝑥𝐴)
1412, 13impbid1 140 . . . . . 6 ((¬ ¬ 𝑥𝐴𝑥𝐴) → (¬ ¬ 𝑥𝐴𝑥𝐴))
1511, 14impbii 124 . . . . 5 ((¬ ¬ 𝑥𝐴𝑥𝐴) ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
1610, 15bitri 182 . . . 4 ((𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
17 df-stab 773 . . . 4 (STAB 𝑥𝐴 ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
1816, 17bitr4i 185 . . 3 ((𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ STAB 𝑥𝐴)
1918albii 1399 . 2 (∀𝑥(𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ ∀𝑥STAB 𝑥𝐴)
201, 19bitri 182 1 ((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥STAB 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  STAB wstab 772  wal 1282   = wceq 1284  wcel 1433  Vcvv 2601  cdif 2970
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-stab 773  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator