ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap GIF version

Definition df-ap 7682
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 7767 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 7705), symmetry (apsym 7706), and cotransitivity (apcotr 7707). Apartness implies negated equality, as seen at apne 7723, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 7722).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Distinct variable group:   𝑠,𝑟,𝑡,𝑢,𝑥,𝑦

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 7681 . 2 class #
2 vx . . . . . . . . . . 11 setvar 𝑥
32cv 1283 . . . . . . . . . 10 class 𝑥
4 vr . . . . . . . . . . . 12 setvar 𝑟
54cv 1283 . . . . . . . . . . 11 class 𝑟
6 ci 6983 . . . . . . . . . . . 12 class i
7 vs . . . . . . . . . . . . 13 setvar 𝑠
87cv 1283 . . . . . . . . . . . 12 class 𝑠
9 cmul 6986 . . . . . . . . . . . 12 class ·
106, 8, 9co 5532 . . . . . . . . . . 11 class (i · 𝑠)
11 caddc 6984 . . . . . . . . . . 11 class +
125, 10, 11co 5532 . . . . . . . . . 10 class (𝑟 + (i · 𝑠))
133, 12wceq 1284 . . . . . . . . 9 wff 𝑥 = (𝑟 + (i · 𝑠))
14 vy . . . . . . . . . . 11 setvar 𝑦
1514cv 1283 . . . . . . . . . 10 class 𝑦
16 vt . . . . . . . . . . . 12 setvar 𝑡
1716cv 1283 . . . . . . . . . . 11 class 𝑡
18 vu . . . . . . . . . . . . 13 setvar 𝑢
1918cv 1283 . . . . . . . . . . . 12 class 𝑢
206, 19, 9co 5532 . . . . . . . . . . 11 class (i · 𝑢)
2117, 20, 11co 5532 . . . . . . . . . 10 class (𝑡 + (i · 𝑢))
2215, 21wceq 1284 . . . . . . . . 9 wff 𝑦 = (𝑡 + (i · 𝑢))
2313, 22wa 102 . . . . . . . 8 wff (𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))
24 creap 7674 . . . . . . . . . 10 class #
255, 17, 24wbr 3785 . . . . . . . . 9 wff 𝑟 # 𝑡
268, 19, 24wbr 3785 . . . . . . . . 9 wff 𝑠 # 𝑢
2725, 26wo 661 . . . . . . . 8 wff (𝑟 # 𝑡𝑠 # 𝑢)
2823, 27wa 102 . . . . . . 7 wff ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
29 cr 6980 . . . . . . 7 class
3028, 18, 29wrex 2349 . . . . . 6 wff 𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3130, 16, 29wrex 2349 . . . . 5 wff 𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3231, 7, 29wrex 2349 . . . 4 wff 𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3332, 4, 29wrex 2349 . . 3 wff 𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3433, 2, 14copab 3838 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
351, 34wceq 1284 1 wff # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Colors of variables: wff set class
This definition is referenced by:  apreap  7687  apreim  7703
  Copyright terms: Public domain W3C validator