ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap GIF version

Theorem apreap 7687
Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))

Proof of Theorem apreap
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2087 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝑟 + (i · 𝑠))))
21anbi1d 452 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
32anbi1d 452 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
432rexbidv 2391 . . . . 5 (𝑥 = 𝐴 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2391 . . . 4 (𝑥 = 𝐴 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
6 eqeq1 2087 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝑡 + (i · 𝑢))))
76anbi2d 451 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
87anbi1d 452 . . . . . 6 (𝑦 = 𝐵 → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
982rexbidv 2391 . . . . 5 (𝑦 = 𝐵 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2391 . . . 4 (𝑦 = 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11 df-ap 7682 . . . 4 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
125, 10, 11brabg 4024 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
13 simplll 499 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐴 ∈ ℝ)
1413adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 ∈ ℝ)
15 simplrl 501 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑟 ∈ ℝ)
1615adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 ∈ ℝ)
17 simplrr 502 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑠 ∈ ℝ)
1817adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 ∈ ℝ)
19 simprll 503 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 = (𝑟 + (i · 𝑠)))
20 rereim 7686 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑟 ∈ ℝ) ∧ (𝑠 ∈ ℝ ∧ 𝐴 = (𝑟 + (i · 𝑠)))) → (𝑟 = 𝐴𝑠 = 0))
2114, 16, 18, 19, 20syl22anc 1170 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 = 𝐴𝑠 = 0))
2221simprd 112 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 0)
23 simpllr 500 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐵 ∈ ℝ)
2423adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 ∈ ℝ)
25 simplrl 501 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 ∈ ℝ)
26 simplrr 502 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 ∈ ℝ)
27 simprlr 504 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 = (𝑡 + (i · 𝑢)))
28 rereim 7686 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝑡 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝐵 = (𝑡 + (i · 𝑢)))) → (𝑡 = 𝐵𝑢 = 0))
2924, 25, 26, 27, 28syl22anc 1170 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑡 = 𝐵𝑢 = 0))
3029simprd 112 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 = 0)
3122, 30eqtr4d 2116 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 𝑢)
32 reapti 7679 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3318, 26, 32syl2anc 403 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3431, 33mpbid 145 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ¬ 𝑠 # 𝑢)
35 simprr 498 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 # 𝑡𝑠 # 𝑢))
3634, 35ecased 1280 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 # 𝑡)
3721simpld 110 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 = 𝐴)
3829simpld 110 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 = 𝐵)
3936, 37, 383brtr3d 3814 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 # 𝐵)
4039ex 113 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4140rexlimdvva 2484 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4241rexlimdvva 2484 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4312, 42sylbid 148 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
44 ax-icn 7071 . . . . . . . 8 i ∈ ℂ
4544mul01i 7495 . . . . . . 7 (i · 0) = 0
4645oveq2i 5543 . . . . . 6 (𝐴 + (i · 0)) = (𝐴 + 0)
47 simp1 938 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℝ)
4847recnd 7147 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℂ)
4948addid1d 7257 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 + 0) = 𝐴)
5046, 49syl5req 2126 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 = (𝐴 + (i · 0)))
5145oveq2i 5543 . . . . . 6 (𝐵 + (i · 0)) = (𝐵 + 0)
52 simp2 939 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℝ)
5352recnd 7147 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℂ)
5453addid1d 7257 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐵 + 0) = 𝐵)
5551, 54syl5req 2126 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 = (𝐵 + (i · 0)))
56 olc 664 . . . . . . 7 (𝐴 # 𝐵 → (0 # 0 ∨ 𝐴 # 𝐵))
57563ad2ant3 961 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (0 # 0 ∨ 𝐴 # 𝐵))
5857orcomd 680 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ∨ 0 # 0))
5950, 55, 58jca31 302 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)))
60 0red 7120 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 0 ∈ ℝ)
61 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → 𝑢 = 0)
6261oveq2d 5548 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (i · 𝑢) = (i · 0))
6362oveq2d 5548 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 + (i · 𝑢)) = (𝐵 + (i · 0)))
6463eqeq2d 2092 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 = (𝐵 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 0))))
6564anbi2d 451 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0)))))
6661breq2d 3797 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (0 # 𝑢 ↔ 0 # 0))
6766orbi2d 736 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 # 𝐵 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 0)))
6865, 67anbi12d 456 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0))))
6960, 68rspcedv 2705 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
70 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → 𝑡 = 𝐵)
7170oveq1d 5547 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝑡 + (i · 𝑢)) = (𝐵 + (i · 𝑢)))
7271eqeq2d 2092 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐵 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 𝑢))))
7372anbi2d 451 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢)))))
7470breq2d 3797 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐴 # 𝑡𝐴 # 𝐵))
7574orbi1d 737 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 # 𝑡 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 𝑢)))
7673, 75anbi12d 456 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7776rexbidv 2369 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7852, 77rspcedv 2705 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
7969, 78syld 44 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
80 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → 𝑠 = 0)
8180oveq2d 5548 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (i · 𝑠) = (i · 0))
8281oveq2d 5548 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 + (i · 𝑠)) = (𝐴 + (i · 0)))
8382eqeq2d 2092 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 = (𝐴 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 0))))
8483anbi1d 452 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
8580breq1d 3795 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝑠 # 𝑢 ↔ 0 # 𝑢))
8685orbi2d 736 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡 ∨ 0 # 𝑢)))
8784, 86anbi12d 456 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
88872rexbidv 2391 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
8960, 88rspcedv 2705 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
90 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴)
9190oveq1d 5547 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 + (i · 𝑠)) = (𝐴 + (i · 𝑠)))
9291eqeq2d 2092 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝐴 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 𝑠))))
9392anbi1d 452 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
9490breq1d 3795 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 # 𝑡𝐴 # 𝑡))
9594orbi1d 737 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝑟 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡𝑠 # 𝑢)))
9693, 95anbi12d 456 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9796rexbidv 2369 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
98972rexbidv 2391 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9947, 98rspcedv 2705 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
10079, 89, 993syld 56 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
101123adant3 958 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
102100, 101sylibrd 167 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → 𝐴 # 𝐵))
10359, 102mpd 13 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵)
1041033expia 1140 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
10543, 104impbid 127 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3a 919   = wceq 1284  wcel 1433  wrex 2349   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981  ici 6983   + caddc 6984   · cmul 6986   # creap 7674   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  reaplt  7688  apreim  7703  apirr  7705  apti  7722  recexap  7743  rerecclap  7818
  Copyright terms: Public domain W3C validator